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Interaction between active materials and the boundaries of geometrical confinement is 
key to many emergent phenomena in active systems. For living active matter consist-
ing of animal cells or motile bacteria, the confinement boundary is often a deformable 
interface, and it has been unclear how activity- induced interface dynamics might lead 
to morphogenesis and pattern formation. Here, we studied the evolution of bacterial 
active matter confined by a deformable boundary. We found that an ordered morpho-
logical pattern emerged at the interface characterized by periodically spaced interfacial 
protrusions; behind the interfacial protrusions, bacterial swimmers self- organized into 
multicellular clusters displaying +1/2 nematic defects. Subsequently, a hierarchical 
sequence of transitions from interfacial protrusions to creeping branches allowed the 
bacterial active drop to rapidly invade surrounding space with a striking self- similar 
branch pattern. We found that this interface patterning is geometrically controlled by the 
local curvature of the interface, a phenomenon we denote as collective curvature sensing. 
Using a continuum active model, we revealed that the collective curvature sensing arises 
from enhanced active stresses near high- curvature regions, with the active length scale 
setting the characteristic distance between the interfacial protrusions. Our findings 
reveal a protrusion- to- branch transition as a unique mode of active matter invasion and 
suggest a strategy to engineer pattern formation of active materials.

biological active matter | interface growth | pattern formation | self- organization |  
bacterial swarming

As a prototype of active matter (1), active fluids consist of force- generating units suspended 
in a liquid medium (2), such as suspensions of motile bacteria (3–5), animal tissues (6, 7), 
and cytoskeleton components driven by molecular motors (8, 9). Interaction between 
active fluids and the boundaries of geometrical confinement has been shown to support 
rich emergent phenomena, such as cell sorting (10, 11), spontaneous flow (9, 12), vortex 
formation (13, 14), and ordering (15). These emergent phenomena are primarily observed 
in active fluids interacting with hard confining walls. However, for living active fluids in 
natural environments or in clinical settings, the confinement boundary is often a soft and 
deformable interface. For example, the collective invasion of mesenchymal cancer cells 
pushes against soft tissue layers (16, 17); surface- associated bacterial communities (or 
biofilms) can grow as droplets on solid substrates where the interfacial mechanics is key to 
their development (18, 19). Activity- induced boundary deformation or interface growth 
enables active matter invasion into the surrounding space (20–23), and it is a key process 
that governs the morphogenesis and pattern formation of active materials (24–29).

Motile bacteria are premier model systems for active matter (1, 2). Here, we studied the 
evolution of bacterial active fluids confined by a deformable boundary, i.e., the three- phase 
(air–liquid–solid) interface. Our experimental setup consists of drops of suspended motile 
bacteria grown on solid substrates; this configuration resembles the initial stages of growing 
bacterial colonies and biofilms commonly found in the natural environment and during 
pathogenesis (18). We found that an ordered morphological pattern emerged at the inter-
face, characterized by periodically spaced interfacial protrusions. Behind the interfacial 
protrusions, bacterial swimmers self- organized into multicellular clusters each displaying 
a +1/2 nematic defect, and the collective velocity field of cells adjacent to the invasion 
interface was organized into a 1D vortex lattice. Some of the interfacial protrusions even-
tually broke out as creeping branches, and the branches continued to experience the 
protrusion- to- branch transition in a hierarchical manner, allowing the bacterial active fluid 
to rapidly invade the surrounding space with a striking self- similar branch pattern. We 
found that the interface patterning of active suspension drops is controlled by interface 
geometry via a mechanism we denote as collective curvature sensing: Both the interfacial 
protrusion amplitude and the probability of the protrusion- to- branch transition are pos-
itively correlated with the local curvature of the drop boundary. We developed a continuum 
active matter model that reproduces the interface morphology and revealed that the 
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collective curvature sensing arises from enhanced active forces near 
high- curvature regions. Our findings illustrate the key role of inter-
face geometry in active matter invasion and pattern formation. 
The protrusion- to- branch transition as a unique mode of space 
exploration is also relevant to the expansion and dispersal of bac-
terial communities in natural environments (18).

Results

Ordered Protrusions and Self- Organization at an Active Fluid 
Interface. We used quasi- 2D circular drops containing a suspension 
of Proteus mirabilis grown on an agar substrate as a model active fluid 
(Methods). P. mirabilis is a gram- negative, rod- shaped bacterium, 
widely distributed in the natural environment (30). It is well known 
for having vigorous flagellar motility on agar surfaces (31). We 
monitored how the active suspension drops of P. mirabilis (~4 μm 
in length and 0.8 μm in width in our growth conditions) started to 
spread on solid substrates with low wettability (Methods). Initially, 
the interface between the active drop and the cell- free space was 
smooth. As time evolved, the interface was gradually deformed, 
and the active drop developed an ordered morphological pattern 
at the interface (Fig. 1 A and B, Upper and Movie S1). This was 
characterized by periodically spaced protrusions along the interface, 
with an interprotrusion separation of 65 ± 9 µm (mean ± SD) 
(Fig. 1C). Behind the interfacial protrusions, bacterial swimmers 
self- organized into multicellular clusters, commensurate with the 
protrusions, with a length (from base to tip) of ~10 to 30 µm. The 
orientation field of cells in each cluster displayed a +1/2 nematic 
defect with the polarity vector (32) pointing perpendicular to the 
interface and toward the colony center (Fig. 1 B, Middle and Movie 
S1). Meanwhile, the collective velocity field of cells adjacent to 
the interface self- organized into a vortex lattice, with neighboring 
domains of opposite vorticity (Fig. 1 B, Lower). The vortices were 
primarily extended perpendicular to the interface, and the domain 
size was, on average, 1/2 of the interprotrusion separation (Fig. 1 B, 
Lower). The vortex lattice was highly stable in time, as shown by the 
strong temporal correlations (Fig. 1D).

To examine whether the interface morphological pattern and 
bacterial self- organization were driven by bacterial motility, we 
optically deactivated the flagellar motility of cells at the invasion 
interface with violet light illumination (14) (Methods). During 
light- induced motility deactivation, the interfacial protrusions 
gradually smoothed out and cells near the edge became aligned 
parallel to the interface (SI Appendix, Fig. S1 and Movie S2). 
Meanwhile, all the multicellular clusters as well as the vortex struc-
ture of the cellular collective velocity field near the interface dis-
appeared. After withdrawal of light, cell motility recovered, and 
the interfacial protrusions reemerged (SI Appendix, Fig. S1 and 
Movie S2). As the growth activity of most cells in the active drop 
was not affected during motility deactivation (note that only cells 
at the edge were illuminated by light), our result showed that active 
stress due to flagellar motility is necessary to form the interface 
morphological pattern and cellular self- organization, while the 
effect of cell mass growth alone cannot account for the phenom-
enon (33). On the other hand, bacterial suspension drops con-
sisting of cells that were washed and deposited on fresh substrates 
developed the same interfacial morphology within ~10 min 
(SI Appendix, Fig. S2 and Movie S3; Methods); this fact rules out 
the contribution of Marangoni instability (34–37), chemotaxis 
(38), or intercellular chemical signaling (39) to the phenomena.

Hierarchical Transition from Interfacial Protrusions to Creeping 
Branches. After the emergence of the interfacial pattern, some 
protrusions of the active suspension drop started to expand 
continuously at a speed of several µm/s (up to ~10 µm/s) in the 
form of creeping branches (Fig.  2A and Movie S4). The first 
creeping branches later underwent the same protrusion- to- branch 
transition process (Fig. 2A): Protrusions developed at the interface 
between the creeping branches and the open space, and some of 
these protrusions broke out as secondary creeping branches. The 
secondary creeping branches again repeated this process to give 
rise to new creeping branches at the next level. The protrusion- to- 
branch transition continued recursively in a hierarchical manner, 
with the creeping branches at all levels of hierarchy having a 
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Fig. 1. Ordered interfacial protrusions and bacterial self- 
organization near an active fluid interface. (A) Representative 
phase- contrast image of a P. mirabilis active suspension 
drop with ordered interfacial protrusions. (Scale bar, 500 
μm.) (B) Upper: Enlarged view of the box in panel A. Middle: 
Orientation field of cells in the Upper panel computed based 
on the gradient field of the phase- contrast image (Methods). 
Red marks represent the direction of +1/2 defects, with the 
dot indicating the defect core. Lower: Colormap showing 
the averaged velocity field at the region shown in the Upper 
panel computed by optical flow analysis on phase- contrast 
images (Methods). The collective velocity field was averaged 
over a duration of 10 s. Arrows in the figure represent 
velocity direction while the colormap at the right indicates 
the radial velocity component (unit: µm/s). A positive value 
indicates moving outward toward the interface, while a 
negative value indicates moving inward away from the 
interface. (Scale bar, 50 μm.) (C) Distribution of the nearest 
separation of interfacial protrusions. (D) Spatial–temporal 
correlation of the radial velocity adjacent to the interface. 
The definition of spatial- temporal correlation function 
C(Δ�,Δt) ∼ ⟨v

r
(R,�, t)v

r
(R,�+Δ�, t+Δt)⟩�,t is provided in 

Methods. On the horizontal axis, R represents the radius of 
the active suspension drop, and θ is the polar angle.D
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conserved initial width of ~20 to 30 µm (Fig. 2A and Movies 
S4 and S5). Interestingly, the width of protrusions [~20 to 30 
µm; defined as the full width at half maximum (FWHM) of the 
protrusion profile] is comparable to the initial branch width and 
also conserved across all levels of hierarchal creeping branches 
(Figs. 1B and 2A and Movies S4 and S5), even on the last- level 
branches which have a width of ~20 µm (SI Appendix, Figs. S3 
and S4). This fact suggests that the protrusion width is controlled 
by some intrinsic length scale, and the characteristic protrusion 
width sets the initial or the minimal width of creeping branches. 
We note that once a creeping branch has formed, cell mass growth 
can help the formation of higher- level branching by supplying 
more cell mass and by widening the branch widths. Also, two 
creeping branches colliding with each other would merge into 
one. Due to branch widening and merging, a general trend is 
that earlier branches become wider than later ones (Movie S5). 
Not all protrusions eventually develop into creeping branches; 
as a protrusion started to expand, we found that the amplitude 
of nearby protrusions would decrease and even disappear 
(SI Appendix, Fig. S5), suggesting that cells are being drawn to 
support the expansion of a nearby existing creeping branch.

The recursive and hierarchical transition process gives rise to a 
striking self- similar pattern (Fig. 2B and Movie S5). To character-
ize this pattern, we computed its fractal dimension Df  and found 
it to be 1.70 (Fig. 2C) (40). The fractal dimension is close to that 
reported for branching patterns of bacterial colonies (41, 42). 
However, here, the fractal- like branching pattern of the active 
suspension drop is driven by defect- mediated active stresses, which 
is in contrast to the fractal- like branching patterns of bacterial 
colonies due to reaction–diffusion processes involving the cou-
pling between cell mass growth and nutrient or chemoattractant 
fields (41, 42). Indeed, cell mass growth alone does not give rise 
to fractal- like colony morphology in P. mirabilis under our exper-
imental conditions since sessile colonies where most cells have 
become immotile but keep growing only expand in a rounded 
shape. However, since cell mass growth can widen the stripes, it 

affects the fractal dimension. Fractal- like branching patterns aris-
ing from chemotactic movement of cells are also found in slime 
molds (43–46). Particularly, the hierarchal narrowing of creeping 
branches in bacterial active drops is reminiscent of the hierarchal 
tube diameters in the network growth of slime mold Physarum 
(45, 46). We note that the protrusion- to- branch pattern of active 
drop invasion is distinct from the fingering pattern of bacterial 
colonies driven by Marangoni instability in the presence of surface 
tension gradients (35–37), which requires biosurfactant synthesis 
and is independent of cell motility.

Interface Curvature Controls Protrusion Amplitude and the 
Probability of a Protrusion- to- Branch Transition. When working 
with active suspension drops of an anisotropic shape, we noticed 
that the first creeping branches were more likely to emanate from 
higher- curvature regions (Fig. 3A). To rationalize this observation, 
we investigated the behavior of interfacial protrusions in active 
suspension drops with different shapes. We found that the amplitude 
of the interfacial protrusions was positively correlated with the 
baseline curvature of the interface (i.e., the local curvature computed 
by smoothing out interfacial protrusions) (Fig. 3B; Methods). For 
instance, the protrusion amplitude near the poles (of higher curvature) 
of an elongated drop was significantly greater than elsewhere, 
while the interprotrusion separation remained the same (Fig. 3C). 
Moreover, examination of the full hierarchical branching pattern of 
active suspension drops revealed that the probability of a protrusion- 
to- branch transition increased with the baseline curvature of the 
interface (Fig. 3D; Methods). These results show that the bacterial 
cells respond to mesoscale curvature (on a length scale much larger 
than single cell size) of the interface of active suspension drops and 
branches in a collective manner to drive the dynamics of interfacial 
protrusions. Here, “collective” means that the change in the shape of 
the interface is caused by the collective interactions of many bacteria, 
rather than single cells; this is in contrast to curvotaxis of migrating 
cells where single cells respond to cell- scale curvature variations (47). 
Therefore, we denote the phenomenon as collective curvature sensing.

100 min20 min 40 min0 minA

100 101 102

Box size (µm)

104

N
 (

L)

103

105B C

Fig. 2. Hierarchical transition from interfacial protrusions to creeping branches. (A) Image sequence showing the transition from interfacial protrusions to 
creeping branches. (Scale bar, 50 μm.) T = 0 min is chosen at the onset of the protrusion- to- branch transition. White arrows on the T = 40- min and 100- min images 
represent the protrusions formed on the first branches, and the red arrow at T = 100 min indicates a position where a secondary creeping branch is forming. 
(B) Self- similar pattern resulting from the recursive and hierarchical protrusion- to- branch transition process. The brighter region at the upper- right corner is 
the edge of the active suspension drop. (Scale bar, 500 μm.) (C) Analysis of the fractal- like branch pattern by the box counting method (40–42). To calculate the 
fractal dimension D

f
 of creeping branch patterns, an image of creeping branches was first divided into a lattice of square domains of size L × L . The number of 

squares that covered the pattern of interest (i.e., creeping branches) were counted and denoted as N(L) . Repeating this procedure yielded N(L) as a function of 
box size L plotted here in the log–log scale. The plot is well fitted by a straight line logN ∼− D

f
log L , suggesting that the branch pattern has self- similarity, and 

D
f
= 1.70 is taken as the fractal dimension.
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The light- induced motility deactivation experiment described 
above (SI Appendix, Fig. S1) suggests that the protrusion ampli-
tude is related to the magnitude of active stress generated by cells. 
Therefore, the collective curvature sensing may result from active 
stress heterogeneity in the active suspension drop. To examine this 
idea, we measured the collective cellular speed behind the bound-
ary (ranging from ~20 to ~50 µm from the interface) at different 
locations within anisotropic active drops; collective speed increases 
with active force in quasi- 2D active bacterial suspensions in con-
tact with a frictional substrate. Indeed, we found that the bacteria 
had a higher collective speed behind the boundary regions with 
greater curvature, while the cell density was almost homogeneous 
(Fig. 3E and SI Appendix, Fig. S6). The curvature- dependence of 
the active- stress distribution also explains the differential proba-
bility of protrusion- to- branch transitions: At boundary regions 
with a higher baseline curvature, the higher collective active stress 
can more easily overcome the liquid–air interfacial tension, thus 
giving rise to higher probabilities of branch invasion.

Numerical Simulations Explain the Interface Morphology and 
Collective Curvature Sensing. Our experiments suggest that the 
interfacial patterning is likely driven by active stresses produced by 
motile bacteria in the suspension drop. To examine this idea, we 
ran continuum simulations describing the suspension droplet as a 
2D active nematic fluid and measuring the collective velocity and 
nematic order parameter (Methods). Guided by the experiments, 
the strength of nematic order was taken to decay from the edge 
to the center. As initial conditions we took the director field 
parallel to the interface with an imposed noise and zero velocity 
field, mimicking the parallel anchoring of cells at the interface 
in experiments. Extensile active fluids are unstable, and at early 

times, a bend instability formed around the drop, thus initiating 
protrusions at approximately regular positions around the 
interface (Fig. 4 A and B, Top). The director configuration within 
the protrusions led to outward radial flow which in turn increased 
the definition of the protrusions and resulted in a director field 
resembling a +1/2 topological defect within each protrusion, as 
observed in the experiments (compare Fig. 4 B, Top and Fig. 1 B, 
Middle). Note also the alternating planar (between the protrusions) 
and perpendicular (under the protrusions) director field at the 
edge of the main drop. We then mimicked the very low velocity of 
the bacteria within the protrusions by reducing the activity to zero 
within the protrusions. The alternating director field at the drop 
edge acted as boundary conditions to stabilize a flow- vortex lattice 
with the same structure as in the experiments (compare Fig. 4 B, 
Bottom and Fig. 1 B, Bottom). This was a persistent state until we 
reintroduced a small activity within the protrusions. They then 
slowly grew and eventually active material escaped from certain of 
the protrusions, as the creeping branches did in the experiments.

The agreement between the phenomena in experiments and 
continuum modeling supports the notion that the bacterial sus-
pension drop can be described as an active drop whose dynamics 
is driven by cell motility. Our simulations suggest that the regu-
larity of protrusion distribution along the interface is rooted in 
the bend instability. Indeed, the simulations showed that the dis-
tance between the protrusions (or protrusion width, which is 
roughly half of the protrusion separation) does not depend on 
system size or geometry but is set by the active length scale 
∼ c0

√
KQ∕� , (with some arbitrary coefficient at the front), where 

KQ is the Frank elastic constant, � is an activity constant, and c0 
is a dimensionless coefficient (Fig. 4C; Methods). The coefficient 
c0 can be found by measuring the average distance between defects 
in large- scale simulations in bulk. To explain collective curvature 
sensing as found in the experiment, we ran simulations of an 
elliptical active drop. In agreement with the experiment, the result 
shows that the protrusions first start growing in the regions of 
higher curvature (Fig. 4D), with the velocity near the interface of 
the elliptical drop proportional to curvature (Fig. 4E). This result 
can be understood as follows in the framework of our continuum 
model. The active force is proportional to the divergence of the 
Q- tensor and is increased by the bend distortion imposed on the 
director field by a curved interface. This is due to the parallel 
alignment of the director with the interface, promoted by both 
the anchoring term in the free energy and the extensile stress (48). 
Since the director is aligned with a curved surface, it deviated from 
the nematic alignment and forms a bend that produces flows. 
Moreover, we looked at the dynamics of the interface at large times 
and found that, similarly to the experiment, when branches 
become elongated enough, they undergo another bend instability 
and form new branches (Fig. 4 F and G and Movie S6). Although 
numerical resolution and lack of cell growth in the model prevent 
us from reproducing the large number of consecutive protrusion-  
to- branch transitions observed experimentally, this result provides 
additional evidence that the fractal- like pattern is created by con-
secutive bend instabilities due to active flows.

Discussion

Taken together, we have identified a unique mode of active matter 
invasion mediated by the interaction between activity- induced 
flows and deformable interfaces. In this mode, active drops of bac-
terial suspensions develop regularly spaced interfacial protrusions 
at the edge; the protrusions further transform into creeping 
branches in a hierarchical, self- similar manner, with the transition 
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Fig.  3. Curvature dependence of protrusion amplitude and protrusion- 
to- branch transition probability. (A) Phase- contrast image of an elongated  
P. mirabilis suspension drop with creeping branches appearing only at the 
pole at the upper right corner, where the baseline curvature is relatively high. 
(Scale bar, 500 μm.) (B) Amplitude of interfacial protrusions plotted against 
the baseline curvature of the active suspension drop (Methods). (C) Enlarged 
view of the pole (Upper) and the lateral side (Lower) regions in panel A. (Scale 
bar 50 μm.) (D) Probability of a protrusion- to- branch transition at the interface 
of active suspension drops (Lower) or creeping branches (Upper) plotted 
against baseline curvature (Methods). Note that the curvature magnitude of 
creeping branches can be much larger (up to ~100 mm−1) than that of the 
main suspension drops (up to ~8 mm−1). (E) Collective speed of cells behind 
the interface of active suspension drops (ranging from ~20 to ~50 µm from 
the boundary) plotted against baseline curvature.
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probability depending on the local interface curvature. Continuum 
simulations of an active drop model reveal that the highly ordered 
pattern of interfacial protrusion is initiated by bend instabilities 
and that enhanced active forces near high- curvature regions result 
in curvature- dependent protrusion dynamics which we term col-
lective curvature sensing.

Self- organized pattern formation is a hallmark of living systems 
and a promising route to engineer functionalities of living mate-
rials (49). Ranging from bacterial colony development (42, 50) 
to animal embryogenesis (51), the formation of biological spatial 
patterns generally requires a complex interplay of genetic regula-
tion, intercellular communication, and mechanical feedback 
(52–54). By contrast, the ordered protrusion and branching pat-
tern reported here relies on purely physical interactions between 
activity- induced flows and deformable interfaces. In particular, 
the phenomenon of collective curvature sensing shows that inter-
face geometry may play important roles in active matter morpho-
genesis. It suggests a strategy, i.e., designing curvature cues at the 

interface of active fluids, to guide and manipulate pattern forma-
tion in active materials.

While we expect that the mode of ordered invasion and pattern 
formation applies to nematic active fluids in general, our findings 
are of direct relevance to the expansion and dispersal of bacterial 
communities. Bacterial communities in ecological and clinical 
settings are commonly found in interface- associated environ-
ments, such as biofilms (55, 56) and bacterial swarms (18, 57) 
that develop on solid substrates. If the substrates are highly wet-
table, communities of motile bacteria can establish a thin liquid 
film and explore new space rapidly by a process known as swarm-
ing, in which flagellar motility drives uniform expansion of the 
liquid film (58, 59). However, swarming is inhibited on substrates 
with low wettability (e.g., high- concentration agar substrates in 
laboratory settings or substrates without wetting agents). Under 
such circumstances, the protrusion- to- branch transition becomes 
a viable solution for bacterial communities to explore new 
territories.
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Fig. 4. Deformation of an active droplet due to extensile active stress. All the scale bars are 15 lattice Boltzmann units. (A) A periodic pattern of protrusions 
forms at the interface of the droplet. (B) Enlarged view of the pink box in panel A. Top: Orientation field around the protrusions. Magenta marks represent +1/2 
defects. Bottom: Color map showing the averaged radial velocity field. Arrows indicate velocity direction. A positive value indicates moving outward toward 
the interface, while a negative value indicates moving inward away from the interface. (C) The distance between adjacent protrusions Δ (rescaled with active 
length- scale c

0

√
K
Q
∕ �  ) as a function of drop radius r

0
 . The color of data points indicates different active length scales (blue: K

Q
= 0 .005 , � = 0 .02 ; green: 

K
Q
= 0 .01, � = 0 .02 ; yellow: K

Q
= 0.01, � = 0.01 ; red: K

Q
= 0.005, � = 0.01 ). The collapse of data in different colors shows that Δ is set by the active length scale. 

The data of Δ in simulations with a stripe- shaped geometry with width equal to 20 lattice Boltzmann units also collapse to a similar value when rescaled with 
c
0

√
K
Q
∕ �  (right- most part of the plot), showing that the average distance between protrusions in creeping branches is also set by the active length scale.  

(D) Formation of protrusions in an elliptical droplet. The protrusions first start growing in regions with higher curvature (poles). (E) Average velocity at the interface 
of the elliptical droplet as a function of the curvature, before the formation of defects. (F) As time passes, +1/2 defects move and form branches (elongated arms 
with nematic order). The elongated arms can then undergo a bend instability and form another arm. (G) At very large times, all the arms have undergone bend 
instabilities, forming a pattern with many branches.
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Methods

No statistical methods were used to predetermine sample size.

Bacterial Strains. The following two strains were used: wild- type P. mirabilis 
BB2000, and a fluorescent P. mirabilis KAG108 [BB2000 background with con-
stitutive expression of Green Fluorescent Protein (GFP) and with an ampicillin 
resistance marker (60); from Karine Gibbs, Harvard University, Cambridge, MA]. 
Single- colony isolates were grown overnight (~13 to 14 h) with shaking in LB 
medium (1% Bacto tryptone, 0.5% yeast extract, 0.5% NaCl) at 30 °C to stationary 
phase. For P. mirabilis KAG108, ampicillin (100 μg/mL) was added to the growth 
medium to maintain the plasmid.

Agar Plates. LB agar (Difco Bacto agar at specified concentrations infused with 
1% Bacto tryptone, 0.5% yeast extract, 0.5% NaCl) was autoclaved and stored 
at room temperature. Before use, the agar was melted in a microwave oven, 
cooled to ~60 °C, and pipetted in 10- mL aliquots into 90- mm polystyrene Petri 
plates. The plates were swirled gently to ensure surface flatness, cooled for 10 
min without a lid inside a large Plexiglas box, and then covered by the lid for 
further experimentation.

Preparation of Bacterial Active Suspension Drops. Two approaches, namely 
colony growth and direct deposition, were adopted to prepare bacterial active suspen-
sion drops containing P. mirabilis. For the colony growth method, overnight P. mirabilis 
cultures were inoculated onto a 0.6% LB agar plate (as described above) by forcibly 
collapsing a bubble consisting of the bacterial culture, forming a lawn of circular inoc-
ula with a diameter 270 ± 120 µm (mean ± SD, N = 35). The inoculated plates were 
dried for 10 min without a lid inside the Plexiglas box. The plates were then covered 
and incubated at 30 °C and ~95% relative humidity in an incubator with a water tray; 
within the experimental observation time, the P. mirabilis inocula as prepared do not 
swarm under this humidity due to the lack of synthesis of wetting agents. The plates 
were incubated for ~20 h. The P. mirabilis inocula incubated for this duration of time 
reached a size of ~0.5 to 2 mm in diameter and a height of ~20 to 30 µm at the center, 
and most cells were highly motile except those near the center. After the emergence 
of interfacial protrusions, it took a variable time for creeping branches to emerge, 
ranging from a few hours to ~10 h depending on the size of the active suspension 
drops. Two or more circular bacterial suspension drops at close proximity could merge 
due to growth- induced expansion, forming an elongated or elliptical suspension drop. 
As the expansion speed of droplets driven by cell growth is much smaller than the 
speed of protrusion and branching driven by cell motility, the shape of active drops 
remains similar during the experiments. To prepare bacterial active suspension drops 
by direct deposition, we collected highly motile cells from P. mirabilis colonies grown 
on 2.0% LB agar (incubated at 30 °C and ~40% relative humidity for ~20 h), washed 
by centrifugation, and resuspended to a volume fraction of ~10% in fresh medium. 
Approximately 0.1 to 0.2 µL of the resuspended P. mirabilis culture was then deposited 
onto fresh 2.0 to 3.0% agar surface (which does not support swarming of P. mirabilis 
within the experimental observation time) to form a circular bacterial suspension drop 
of ~1.5 to 2 mm in diameter. After depositing the active suspension drops, interfacial 
protrusions appeared in ~1 to 5 min, the ordered interfacial morphological pattern as 
shown in Fig. 1 stabilized within ~10 min (Movie S3), and the protrusion- to- branch 
transition normally occurred in ~20 min. To assess bacterial number density in active 
suspension drops by fluorescence intensity, wild- type P. mirabilis was replaced with 
GFP- tagged P. mirabilis KAG108 in the above experiments.

Microscopy Imaging. All imaging was performed on a motorized inverted micro-
scope (Nikon TI- E). The phase- contrast images of bacterial active suspension drops, 
interfacial protrusions, and creeping branches were acquired with 20× (Nikon S Plan 
Fluor 20×, numerical aperture 0.45, working distance 8.2- 6.9 mm), 10× (Nikon CFI 
Achromat 10×, numerical aperture 0.25, working distance 7.0 mm) or 4× (Nikon 
Plan Fluor 4×, numerical aperture 0.13, working distance 16.5 mm) objectives; the 
images were recorded by a scientific complementary metal- oxide- semiconductor 
(sCMOS) camera (Andor Zyla 4.2 PLUS USB 3.0) at 10 fps and at full frame size 
(2,048×2,048 pixels). To tune the speed of cells in the bacterial suspension, cells 
were illuminated by violet light of ~1,740 mW/cm2 provided by Nikon Intensilight 
and passing through the 20× objective via a 406- nm filter (406/15 nm; FF01- 
406/15- 25, Semrock Inc.). To assess bacterial number density in active suspension 
drops, GFP- tagged P. mirabilis KAG108 cells were imaged in epifluorescence using 
the 20× objective and an FITC filter cube (excitation 482/35 nm, emission 536/40 
nm, dichroic 506 nm; Semrock Inc.), with the excitation light provided by a mercury 

precentered fiber illuminator (Nikon Intensilight); the fluorescence images were 
recorded with the sCMOS camera (Andor Zyla 4.2 PLUS USB 3.0). In all experiments, 
the Petri dishes were covered with a lid to prevent evaporation and air convec-
tion. The sample temperature was maintained and controlled via a custom- built 
temperature- control system installed on the microscope stage.

Image Processing and Data Analysis. Images were processed using open- source 
Fiji (ImageJ) software (https://fiji.sc/) and custom- written programs in MATLAB (The 
MathWorks, Inc.). Prior to processing, the microscopy images were smoothed to 
reduce noise by convolution with a Gaussian kernel of SD ~1 µm. To acquire the 
bacterial orientation field, we first calculate the structure tensor defined as

J
�
x, y

�
=

⎡
⎢
⎢⎣

Ix Ix Ix Iy

Iy Ix Iy Iy

⎤
⎥
⎥⎦

 ,

where Ix = �x I , Iy = �y I , and I = I
(
x, y

)
 is the light intensity field of a phase- 

contrast image (61). As the intensity of the regions occupied by bacterial cells is 
different from the background in phase- contrast imaging, the spatial gradients of the 
intensity field that appear in the structure tensor contain information on the spatial 
distribution of cell orientations: For a given position 

(
x, y

)
 , the orientation �

(
x, y

)
 

of the eigenvector of the structure tensor J
(
x, y

)
 with greater eigenvalue typically 

corresponds to the local orientation of cells located at the position. The bacterial 
orientation field was obtained by coarse- graining the local orientations �

(
x, y

)
 with 

a grid size of 10 pixel × 10 pixel (3.25 µm × 3.25 µm); the mean orientation at a 
grid, denoted as ⟨�⟩ , is computed as arg

�∑
kexp(i2�k )

�
 (62), where arg(x) denotes 

the argument of the complex number x. To identify the nematic defects near the 
interface, we computed the net change of director angle along a counterclockwise 
loop around each grid, and grids with ∼π director angle change were identified 
as the cores of +1/2 nematic defects (63). The direction of a +1/2 nematic defect 

is calculated as ni =
∇ ⋅ J(r i )

|||∇ ⋅ J
(
r i

)|||
 , where r i is the location of the defect core (32).

To identify the protrusions at the interface of the active suspension drop, we 
first converted the phase- contrast image to a binary image to identify the inter-
face. For circular active suspension drops, the active fluid interface was repre-
sented as � = f (�) in a polar coordinate with the origin set as the center of the 
active suspension drop. For active suspension drops with an anisotropic shape, the 
interface was divided into ~200- µm segments; each segment was represented as 
� = f (�) in a local polar coordinate system whose origin was chosen as the center 
of curvature of a circular arc that best fitted the interface segment. Next, the active 
fluid interface (or interface segment) was smoothed along � to reduce noise by 
convoluting f (�) with a Gaussian kernel of SD of Δ� =1 µm/� . The protrusion 
peaks and valleys were identified as ��� = 0 and 𝜕2

𝜙
𝜌 < 0 (for protrusion peaks) 

or 𝜕2
𝜙
𝜌 > 0 (for valleys). The amplitude of the interfacial protrusions was defined 

as half of the difference in averaged polar radius between protrusion peaks and 
valleys, i.e., (�peak−�valley)∕2 . If the amplitude of a protrusion exceeds 100 µm, 
the protrusion is considered as having transitioned to a creeping branch.

To compute the collective velocity near the interface, we first performed opti-
cal flow analysis based on phase- contrast time- lapse videos using the built- in 
OpticalFlowHS function (64) of MATLAB with a grid size of 1 pixel × 1 pixel. Prior 
to the optical flow analysis, the microscopy images were smoothed to reduce 
noise by convolution with a Gaussian kernel of SD of 1 µm. The results were 
insensitive to different parameters of smoothing. The optical flow analysis yielded 

a space-  and time- dependent collective velocity field 
→

v (
→

r , t ) , which was then 

decomposed in polar coordinates as ( vr
(
r⃗ , t

)
 , v𝜙

(
r⃗ , t

)
 ) ( vr denotes radial compo-

nent and v� denotes tangential or azimuthal component; the origin of the polar 
coordinate system is chosen at the center of the circular bacterial active suspen-
sion drop). The spatial- temporal correlation of radial velocity near the interface 

is computed as C (Δ�,Δt)=
⟨v

r (R,�, t)vr (R,�+Δ�, t+Δt)⟩�,t
⟨v

r
(R,�, t)2⟩�,t

 , where Δ� 

is the polar angle difference from an arbitrary reference position on the interface, 
Δt is the time difference from an arbitrary instant ( Δt > 0 , corresponding to time 
lag in the correlation calculation), angular brackets ⟨…⟩�,t indicate averaging 
over the azimuthal angle and time t  , and R is the averaged radius of the active 
suspension drop.D
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To calculate the baseline curvature of the interface of active suspension drops 
or creeping branches, segments of the interface with a length specified below 
were fitted to circular arcs via the least squares method in MATLAB. The protocols 
for obtaining the interface segments on active suspension drops and on branches 
were different because the contribution from protrusions was excluded in differ-
ent ways under the two circumstances: 1) To calculate the baseline curvature of 
active suspension drops, we first binarized a phase- contrast image (e.g., main text 
Fig. 3A) into a black- and- white (BW) image with an appropriate threshold. The 
BW image was convolved by a 2D Gaussian filter (SD 30 µm) to smooth out the 
interface protrusions. The smoothed grayscale image allowed us to extract the 
information of the suspension drop’s interface by thresholding. The interface was 
then divided into segments of length ~300 µm, and local baseline curvatures 
were calculated based on these segments. 2) To calculate the baseline curva-
ture of the interface of creeping branches, we had to use a different approach to 
exclude the contribution from protrusions because the curvature of protrusions 
is of a similar magnitude as that of the branches. We first binarized the original 
phase- contrast images of branches into black- and- white images and extracted 
the branch interface from the binarized images. In parallel, we computed the 
orientation field of cells based on the phase- contrast images, and interface protru-
sions were identified by the presence of +1/2 nematic defects in the orientation 
fields. Then, the branch interface associated with the identified protrusions was 
removed, and the remaining portion of the interface was divided into segments 
of length ~100 µm for the calculation of local baseline curvature.

To calculate the probabilities of protrusion- to- branch transition (Fig. 3D), sam-
ples of creeping branches and of main suspension drops (either with or without 
diverging protrusions) were processed using the protocols described above to 
yield interface segments for local baseline curvature calculation; the total number 
of these segments is ~55,000 for the active suspension drops and ~30,000 for 
creeping branches, respectively. Each segment was fitted to an arc to calculate 
the baseline curvature. According to the baseline curvature, the segments were 
divided into 10 groups falling into bins of the baseline curvature ranging from 
−100 to 100 mm−1 (for data of creeping branches) or from −3.3 to 7.3 mm−1 
(for data of suspension drops). For the average baseline curvature corresponding 
to each group, we calculate the probability of protrusion- to- branch transition as 
the ratio between the number of diverging and nondiverging segments within 
the group.

Continuum Simulation of the 2D Active Nematic Fluid Drop Model. We 
use the active nematohydrodynamic equations, the fundamental continuum 
equations that describe wet active nematic (65–68). These are coupled equa-
tions for the evolution of the bacteria concentration field � , nematic tensor, 
Q = S(nn − I∕2) in two dimensions, and the associated incompressible fluid 
velocity, u . They read

 [1]

 [2]

 [3]

 [4]

 [5]

In the definition of the nematic tensor, the director field n represents the 
orientation of the nematic alignment, and the magnitude of the nematic order 
is denoted by S . In the evolution of the Q tensor, � is the rotational diffusiv-
ity, and the molecular field, H = − �f ∕�Q + ∇ ⋅

(
�f ∕�∇Q

)
 , drives the 

nematic tensor toward the minimum of the free energy (5). The generalized 
advection term

 [6]

models the response of the nematic field to the strain rate E and vorticity � , and 
� denotes the flow- aligning parameter. In the Navier–Stokes equation (2), � is 
the density of the suspension, Γf  is a friction coefficient, and the stress tensor, � , 
includes viscous, elastic, and active contributions. The viscous stress, �v = 2�E , 
where � is the viscosity, and the elastic stress,

 [7]

where P is the pressure. These are familiar terms that appear in the dynamical 
equations of passive liquid crystals. Activity enters through an active stress 
�

a = − �Q , where, for the extensile systems studied in this paper, � > 0.
Eq. 3 describes the evolution of the concentration of bacteria, where Γ� 

shows how fast � responds to gradients in the chemical potential � . The first 
term in the free- energy density equation (Eq. 5) stabilizes a nematic phase 
inside the drop (where � ≠ 0 ). The second and third terms in Eq. 5 stabilize 
the circular droplet; they are Cahn–Hilliard- type free energies describing soft 
boundaries with the length of the transition regions between bacteria and 
the surrounding fluid proportional to 

√
K�∕A , where K� is the surface tension 

coefficient and A is the coefficient associated with phase separation of two 
fluids. The fourth term in Eq. 5 is the energy cost due to distortions in the 
nematic field, assuming a single Frank elastic constant KQ . Finally, the last 
term in Eq. 5 is an anchoring free energy which favors parallel anchoring of 
the director at the interface for a < 0.

In the experiments, the nematic alignment of the bacteria decreases toward 
the center of the drop. To mirror this in the simulations, the magnitude of the 
nematic order inside the drop is set by a field   with dynamics

 [8]

and with the boundary condition that  = 1 outside the drop and also at the 
interface if 𝜙 < 0.5 . This dynamic results in the magnitude of the order, and 
as a result the magnitude of the active stress, decaying toward the center of 
the drop. Inside the drop, the magnitude of the nematic order is related to 
the field   through the relation S2 =   , and outside, the drop S is equal 
to zero. Eq. 8 allows for the formation of periodic patterns at the interface. 
Studies of active droplets in which the nematic order is constant throughout 
the droplet have shown formation of protrusions at the interface, but these 
are due to defects formed in the center of the droplet, and the resulting 
patterns are not periodic (69). In our simulations and experiments, the defor-
mations are caused by defects and distortions of the nematic field that form 
near the interface.

The deformation of the boundary in our model is mainly caused by the velocity 
of the active nematic material (through a term u ⋅ ∇� in Eq. 3). We note that 
Laplacian growth models produce fingering at the interface between two immis-
cible passive fluids (70). Laplacian growth models describe the patterns that form 
at the interface between two fluids with different viscosities, by assuming that 
the velocity of the fluid is proportional to the gradient in pressure. In our model, 
the velocity is a function of cell orientation, and the interface dynamics is affected 
by flows created by the bacteria. The elasticity and the active flows both enter 
the dynamics of the nematic tensor and lead to formation of defects. The defects 
themselves create more flows, and so the dynamics of boundary deformation in 
our model is different from Laplacian growth.

The equations of active nematohydrodynamics are solved using a hybrid lattice 
Boltzmann and finite difference method in a square box with periodic bound-
ary conditions (65, 71). For the simulations of the circular drop in Fig. 4 A–C, F, 
and G and Movie S6 in SI Appendix, we used the parameter values: Ds = 0.1 , 
� = 40 , � = 0.3 , ks = 0.0002 , � from 0.01 to 0.02, Γf = 0.3 , KQ from 0.005 to 
0.01, K� = 0.01 , C = 0.001 , A = 0.1 , Γ� = 0.1 , � = 0 , a = − 0.005 . The size 
of the simulation box and the total time of the simulation were L = 450 and 
ttot = 5 × 105 in lattice Boltzmann units, and the radius of the drop was r0 = 150 . 
The simulations were initialized with the director parallel to the interface and 
with a uniform noise in the interval [0, 3�] × 10−2 . To calculate the director and 

�tQ + u ⋅ ∇Q − = �H,

�
(
�t+u ⋅∇

)
u=∇ ⋅�−Γf u, ∇ ⋅u=0

�t� + u ⋅ ∇� = Γ�∇
2�,

� =
�f

��
− ∇ ⋅

(
�f

�∇�

)
,

f =
C

2

(
 �−

QijQij

2

)2

+
A

2
�2(1−�)2+

K�

2
∇m�∇m�

+
KQ
2
∇mQij∇mQij+a∇i�Qij∇j�.

 =(�E+�) ⋅

(
Q+

I

2

)
+

(
Q+

I

2

)
⋅ (�E−�)−�(Q+ I)Tr(Q ⋅E),

Π
p

ij
= −P�ij+�

(
Qij+�ij

)
QklHkl−�Hik

(
Qkj+

�kj

2

)

−�

(
Qik+

�ik

2

)
Hkj+QikHkj−HikQkj−K

(
�iQkl

)(
�jQkl

)
,

�t = Ds∇
2 − ks�,
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the average velocity field in Fig.  4B, we fixed the edge of the drop once the 
protrusions and the defects had formed and averaged the flow in the vicinity of 
sufficiently wide protrusions.

For the ellipse in Fig. 4 D and E, we chose the long and short axis equal 
to r2 = 150 and r1 = 85 , respectively. We added an initial noise uniformly 
distributed in the interval 

[
0,�

]
× 10−3 . All the other parameters were the 

same as above. In Fig. 4E, we averaged the velocity field at the scale of each 
protrusion when small protrusions form. The curvature is the curvature of the 
original ellipse.

Data, Materials, and Software Availability. All study data are included in 
the article and/or supporting information. The data can also be accessed at:  
doi: 10.57760/sciencedb.09346 (72).
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